On-Demand Webinar
Increase Exploration Success with Innovative Digital Geoscience Solutions
The future of the upstream industry lies in the adoption of innovative geoscience digitalization solutions to optimize operations. Machine learning applications for geoscience data have been in use for more than 25 years but have recently become critical due to massive growth in the amount of petrotechnical data being acquired. As machine learning evolves, it will play an increasingly visible role in analyzing surface and subsurface data.
Ebook
How to Increase Productivity and Profitability with Near-Field Exploration and Development
The upstream oil and gas exploration and production industry is looking for ways to reduce costs while minimizing emissions, water use and other environmental impacts. Near-field exploration and development enables producers to leverage already depreciated costs in operating infrastructure and extend the life of a declining field by accessing new or previously bypassed reservoirs.
Data Sheet
Subsurface Science & Engineering Product Overview
Global energy companies trust the AspenTech® Subsurface Science & Engineering portfolio to solve their most complex exploration and production challenges while reducing geological risks and minimizing impact on the environment. Get a quick look at our products, with QR codes linking to more details. Download now.
Data Sheet
Neural Network Inversion (NNI) in Aspen SeisEarth™
Leverage machine learning to perform quick and accurate amplitude inversions and rock property estimations when short project timelines exist. Aspen SeisEarth’s Neural Network Inversion feature provides a step-by-step workflow available for interpreters and non-specialists.
Article
Using a Self-growing Neural Network Approach to CCS Monitoring
This article shows how a machine-learning workflow based on a Self-Growing Neural Network (SGNN) was used by Aspen SeisEarth™ as an efficient and unbiased scanning tool for carbon capture and storage (CCS) monitoring, enabling faster identification of the confinement system.
Page 1 of 2